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Abstract. Coronas, including symplectites, are vital clues to the presence of arrested reaction and preservation of partial
equilibrium in metamorphic and igneous rocks. Compositional zonation across such coronas is common, indicating the
persistence of chemical potential gradients and incomplete equilibration. Major controls on corona mineralogy include P, T
and aH20 during formation, continuous or non-continuous corona formation, reactant bulk compositions and extent of
metasomatic exchange with the surrounding rock, relative diffusion rates for major components, and/or contemporaneous
deformation and strain. High-variance local equilibria in a corona and disequilibrium across the corona as a whole preclude
the application of conventional thermobarometry when determining P-T conditions of corona formation, and zonation in
phase composition across a corona should not be interpreted as a record of discrete P-T conditions during successive layer
growth along the P-T path. Rather, the local equilibria between mineral pairs in corona layers more likely reflect

compositional partitioning of the corona domain during steady-state growth at constant P and T.

Corona formation in pelitic and mafic bulk rock compositions requires dry, restitic bulk rock compositions. Since most melt
is lost at or near peak conditions only a fraction of melt is retained in the restitic post-peak assemblage. Reduced melt
volumes with cooling limit length-scales of diffusion to the extent that diffusion-controlled corona growth occurs. On the
prograde path, the low melt (or melt-absent) volumes required for kinetically-constrained corona growth are only commonly
realised in mafic rocks, owing to their intrinsic anhydrous bulk composition, and in dry, restitic pelitic compositions that
have lost melt in an earlier metamorphic event. Mafic and pelitic prograde coronas show similar ranges of thickness and
vermicule size; prograde contact aureole coronas display similar thicknesses but slightly longer vermicule lengths compared
to regional metamorphic coronas. Retrograde coronas in mafic rocks are significantly thinner than pelitic coronas and have
smaller vermicule lengths, whereas retrograde pelitic coronas show similar parameters to their prograde counterparts.
Reduced maximum corona thickness and smaller maximum vermicule size in retrograde mafic coronas compared to
retrograde pelitic coronas attests to more restricted length-scales of diffusion in melt-poor, anhydrous, mafic bulk rock
compositions. Increased maximum layer thickness and vermicule size in prograde mafic coronas compared to retrograde
mafic coronas is due to greater length-scales of diffusion in more melt-rich bulk compositions with protracted reaction along

the prograde path. Prograde pelitic coronas do not differ significantly from retrograde pelitic coronas with respect to
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microstructure, owing to the intrinsically more hydrous pelitic bulk compositions and capacity to generate diffusion-

enhancing melt during decompression.

Through the application of either quantitative physical diffusion modelling of coronas or phase equilibria modelling utilising
calculated chemical potential gradients, it is possible to model the evolution of a corona through P-T-X space by continuous
or non-continuous processes. Since corona modelling employing calculated chemical potential gradients assumes nothing
about the sequence in which the layer forms and is directly constrained by phase compositional variation within a layer, it
allows far more nuanced and robust understanding of corona evolution and its implications for the path of a rock in P-T-X
space.

Key words: corona, chemical potential gradient, diffusion, disequilibrium, metamorphism, mineral compositional zoning,

reaction dynamics, reaction texture, symplectite.

1 Introduction

Fundamental to the study of metamorphic rocks is the application of equilibrium thermodynamics in the understanding of the
development of a mineral assemblage within evolving pressure (P), temperature (T) and chemical potential regimes. In an
equilibrated assemblage, the chemical potentials of all components are equal spatially throughout the equilibrium volume;
however, different rates of intergranular diffusion for major and trace components limit the capacity of a rock to fully
eliminate gradients in chemical potentials and attain equilibrium on both micro- and macro-scales (Carlson, 2002; White et
al., 2008; White & Powell, 2011). A more realistic model of partial equilibrium, i.e., equilibrium for some components and
not for others, is likely to be attained in a rock. In a sense partial equilibrium is fortuitous, since evidence of disequilibrium
preserved in reaction textures reveals basic physico-chemical reaction dynamics operating during metamorphism that are
obscured if a rock equilibrates completely. However, partial disequilibrium also compromises petrographic and
geothermobarometric evidence as records of the metamorphic evolution of a rock and can lead to erroneous interpretations
(White & Powell, 2011). An understanding of how partial equilibrium manifests petrographically and chemically is, thus,

critical in refining our appreciation of metamorphic rocks.

The most obvious manifestation of partial equilibrium is that exhibited in reaction textures comprising coronas and
symplectites. The spatially segregated phases preserved within these incipient reaction textures are the best petrographic
evidence available to us to allow the study of the evolution of chemical potential gradients governing the reorganization of
components within a rock with changing P-T-X (composition) conditions (e.g., White et al., 2008; Stipska, et al., 2010;
White & Powell 2011; Baldwin et al., 2015). The disequilibrium commonly preserved in coronas and symplectites does not,
however, preclude the application of equilibrium thermodynamics in modelling and interpreting those textures; it only
invokes a reconsideration of the appropriate equilibration volume in which chemical potential gradients are absent (White &

Powell, 2011). Within any reaction texture, at an appropriate scale, chemical equilibrium exists and attendant chemical
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potentials may be determined for a given P and T within the local bulk composition dictated by the equilibration volume.
This concept of local equilibrium was first introduced by Korzhinski (1959) and has been the premise upon which all studies

of reaction textures are predicated.

In this paper, we present an analysis of more than 50 metamorphic corona textures (Appendices 1 and 2) and discuss two
contrasting modelling methodologies used in interpreting the evolution of these textures. We review recent strides in
modelling corona textures utilising calculated phase diagrams and assess their significance and limitations when used to infer

the P-T-X evolution of metamorphic rock.

2 Reaction kinetics and coronas

Metamorphic reactions are initiated when a pre-existing mineral assemblage becomes unstable owing to changing P-T-X
conditions, and seeks to re-establish chemical equilibrium by rearrangement of its chemical constituents into a new mineral
assemblage. The critical kinetic constraints on extent of any metamorphic reaction are (a) the rate of supply of matter
through intergranular diffusion; (b) the rate of reactant dissolution and product nucleation during recrystallisation (interface
control); and (c) the rate of supply or removal of heat (Fisher, 1977; Joesten, 1977; Brady, 1983; Tracey and McLellan,
1985; Carlson, 2002). Interface reaction rate, in turn, depends on the affinity for reaction, i.e., the difference between the
chemical potentials of diffusing components and their equilibrium values (Carlson, 2002). The slowest of these rate-limiting
processes determines the nature and extent of reaction and equilibration. During stages of reaction at high temperatures in
the presence of a melt or fluid phase, reaction rates are typically interface- rather than diffusion-controlled since diffusion
coefficients are large and, thus, unlikely to be rate-limiting. With cooling or loss of the melt or fluid phase, diffusion rates
become more important, as does heat flux out of the system. Lower diffusion rates impede efficient chemical communication
of requisite components to reaction sites; consequently, the bulk rock composition becomes effectively partitioned into

smaller compositional domains that are in local equilibrium, with gradients in chemical potential existing between them.

Multilayer coronas involving the spatial segregation of reaction products in layered corona bands arranged in order of
increasing or decreasing chemical potential (Fisher, 1977; Joesten, 1977) are the most obvious manifestation of diffusion-
controlled reactions. As changing P and T induces incipient reaction between contiguous metastable reactants, components
will start to migrate between the reactants. If the major components display variable intergranular diffusivities, they will be
partitioned into a continuum of compositional subdomains, or incipient "effective bulk compositions"”, in each of which local
equilibrium is attained with its own unique chemical potentials. The width of the corona and each of its layers will be
dictated by the different length-scales of diffusion for each component. A layered corona assemblage develops, across which
transient chemical potential gradients exist, which drive diffusion through the layers. With prolonged reaction or enhanced
intergranular diffusion, component flux through the corona layers equalises chemical potentials at all points in the corona.

Local incipient bulk compositions of subdomains gradually should expand with mass transfer across layers and approach the
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final steady-state effective bulk composition for the corona as a whole. Equilibrium is attained when no chemical potential

gradients exist for any components, despite the spatial segregation of corona phases in layers.

The interpretation of corona textures has traditionally been a primary diagnostic tool for inferring metamorphic P-T-t
paths and, hence, tectonics (Whitney and McLelland, 1973; Grew, 1980; Joesten, 1986; Droop, 1989; Clarke et al., 1989;
Ashworth et al., 1992; White and Clarke, 1997; Norlander et al., 2002; White et al., 2002; Kelsey et al., 2003b; Johnson et
al., 2004; Tsunogae and Van Reenen, 2006; Zulbati and Harley, 2007; Hollis et al., 2006). Kinetically constrained conditions
may arise on both the prograde and retrograde path but, typically, coronas are thought to have formed during retrogression
from peak P-T conditions as univariant, or at least very low variance, equilibria are crossed. The topology of the inferred
univariants with respect to the peak assemblage has commonly been used to constrain a retrograde P-T path (Harley, 1989).
Retarded reaction progress under retrograde conditions owing to sluggish reaction kinetics manifests as incomplete reaction
between peak phases to produce layered, finely crystalline, spatially segregated reaction products, which armour the peak

phases from further reaction.

The inherent assumption of disequilibrium between reactants and corona products was elegantly questioned in a study by
White et al. (2002) on metapelites from the Musgrave Block in Australia. Phase equilibria modelling employing
pseudosections in KFMASHTO demonstrated that corona textures could realistically be developed in a peak, high variance,
assemblage that remains in equilibrium but undergoes large changes in mineral modes as the P-T path tracks through the
phase field. Thus, it may not be necessary to invoke crossing of univariants and disequilibrium to explain corona textures.
Indeed, the amount of decompression required to generate the equilibrium reaction texture described by White et al. (2002)
was comparatively minor and may well have been overestimated by earlier workers (Harley, 1989). White & Powell (2011),
also urge caution in assuming incomplete reaction progress in coronas where the cessation of textural development reflects

the consumption of melt, in which case the reaction responsible has gone to completion.

Whilst there is a general understanding of the processes that induce corona formation (e.g., Harley, 1989; White et al., 2002;
Johnson et al., 2004; White et al., 2008), the mechanism for corona development is poorly known since the final steady-state
configuration of corona layers observed in a rock reflects the complex evolution of chemical potential relationships with P, T
and bulk composition. These same complexities must also govern metamorphic processes on the prograde path at larger
scales. However, greater melt or fluid volumes and increasing temperatures on the prograde path facilitate equalisation of
chemical potentials through accelerated diffusion in the assemblage, such that only the spatial sequestration of phases (for
example, between melt-rich leucosomes and melt-poor mesosomes) attests to the compaositional partitioning of the rock and
attendant chemical potential gradients that must have prevailed during diffusion-controlled reaction (White et al., 2004). In
coronas, disequilibrium is frozen in the rock, preserving incipient reaction textures. They are, therefore, the best petrographic
evidence available to us to allow the study of the evolution of chemical potential gradients governing the reorganization of

components within a rock with changing P-T-X conditions (e.g., White et al., 2008).
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3 Corona growth models

Two distinct paradigms have evolved in the last four decades to explain development of multi-layered coronas, namely,
synchronous, continuous, single-stage, steady-state (e.g., Ashworth and Sheplev, 1997) and non-continuous, sequential
(Joesten 1986; White and Clarke, 1997) diffusion-controlled growth. Distinguishing between the two mechanisms for corona

formation is critical when inferring information regarding the P-T path from them (White & Powell, 2011).

3.1 Continuous, single-stage, steady-state, diffusion-controlled corona growth (SSDC)

The single-stage, steady-state multilayer growth model attributes corona development to diffusion-controlled reaction
mechanisms at constant pressure and temperature, with local equilibrium and chemical potential gradients across each layer
and the corona as a whole (Fig. 1). The spatial segregation of phases into layers reflects relative mobility of components
owing to variable intergranular diffusivities rather than distinct P-T conditions. All layers in the reaction bands coexist
contemporaneously with infinitesimal thickness at the incipient stages of reaction. Only layer thickness increases with
reaction duration and no change to the internal structure of the corona occurs. Chemical potential gradients evolve toward a
steady-state and constant final configuration balancing the rate of production and consumption of each component within
each layer (Korzhinskii, 1959; Joesten, 1977; Mongkoltip and Ashworth, 1983; Foster, 1986; Grant, 1988; Johnson and
Carlson 1990; Carlson and Johnson, 1991; Ashworth and Birdi, 1990; Ashworth et al., 1992; Ashworth and Sheplev, 1997;
Markl et al., 1998; Ashworth et al., 1998).

Figure 1 demonstrates incipient stages of SSDC corona formation chemographically and in chemical potential space by
considering two phases (A and D) initially at equilibrium under P; and T; with bulk composition indicated by the circle (Fig.
1a). If new P and T conditions (P,, T,) are kinetically inhibited and reaction progress becomes diffusion-controlled, relative
differences in intergranular diffusivities partition the original bulk composition (circle) into two endmember, non-
overlapping, local bulk compositions (square, triangle) intermediate between the reactant compositions (Fig. 1b). The
product mineral assemblage layers are spatially segregated in local equilibrium and comprise the mineral assemblage
stabilised in each local effective bulk composition, i.e., the local bulk composition indicated by the square stabilises
assemblage BCD and, similarly, the bulk composition indicated by the triangle stabilises assemblage ABC (Fig. 1b). A
ternary G-X surface (Fig. 1c) indicates that the tangent planes to the minimum free energy assemblages have different
orientations and, accordingly, components have different chemical potentials in each assemblage. The coexistence of two
local juxtaposed equilibria buffers the chemical potentials of diffusing components across the coronas (Joesten, 1977).
Figure 1d represents the associated isothermal-isobaric chemical potential saturation surface for each of the local phase
assemblages (modified after Joesten, 1977). Each local bulk composition, represented by a three-phase assemblage, is
invariant in chemical potential space at constant P and T. The invariant assemblage ABC (triangle) lies at a higher chemical
potential for component 3 and lower chemical potentials for components 1 and 2, than does the invariant assemblage BCD

represented by the square. A projection of the saturation surface on the pcompi-Heompz Plane (Fig. 1€) more clearly indicates
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the difference between chemical potentials for each local equilibrium. Maintenance of these local equilibria requires that
chemical potential gradients must exist across each layer and, thus, that the system as a whole is in disequilibrium, which
drives diffusion of components from one compositional domain to another. Chemical potential differences across each layer
adjust to steady-state values that balance the rates of production and consumption of each component within the layer
(Joesten, 1977). Chemical potential gradients for rapidly diffusing components may be eliminated across the corona, whilst

those for the slowest moving components (typically Al and Si) are maintained, establishing partial equilibrium.

Continued corona evolution entails the growth of a layer assemblage at the expense of its neighbour by reaction with the
diffusing components (Joesten, 1977). The relative diffusive fluxes of components in adjacent layers determine which
mineral phases are consumed and produced at each layer boundary, as well as the reaction stoichiometry (Joesten, 1977;
Fisher, 1977). All mineral layers grow at the same time, by a set of diffusion-controlled reactions at layer contacts which
liberate and consume components in the appropriate proportions to account for mass balance in the overall system (Joesten,
1977, 1986; Fisher, 1977). The only layer that grows at both contacts is the layer that initially contained the original reactant
interface (Joesten, 1977; Joesten, 1986). Fisher (1973) demonstrated that diffusion will automatically tend to shift potentials
toward values such that the flux differences at every point in a corona balance local reactions, thereby establishing a steady-
state configuration. Growth of coronas will slow and eventually cease either when diffusion paths become too tortuous and
long; chemical potential gradients approach values too low to drive significant diffusion; and/or intergranular diffusivities

are reduced with cooling during retrogression (Joesten, 1977; Fisher, 1977; Ashworth and Sheplev, 1997).

The corona in Fig. 2 is a schematic reconstruction of those described by Johnson and Carlson (1990) from metagabbros in
the Adirondack Mountains that they interpreted as a natural example of single-stage, steady-state, diffusion-controlled
growth at constant P and T. During granulite facies metamorphism a primary igneous assemblage involving contiguous
olivine and plagioclase (Fig. 2a) becomes unstable and is replaced by a new stable assemblage including orthopyroxene,
clinopyroxene, plagioclase and garnet (Fig. 2b). As rates of P-T change exceed rates of intergranular diffusion in the dry
mafic bulk composition, diffusion-controlled reaction ensues. Variable relative rates of intergranular diffusion manifest as
spatially segregated product layers, depending on the diffusion range of each component, and the corona domain is
partitioned into a continuum of compositional subdomains or incipient effective bulk compositions in which local
equilibrium is attained, each with unique chemical potentials (Fig. 1). Since Al is the slowest-diffusing component, the most
aluminous product phase adjoins the most aluminous reactant and asymmetric composition profiles for slower-diffusing
species are established across product bands, e.g., Al content in product bands increases toward the Al-rich reactant. Fe, Mg
and Si released from olivine diffuse down chemical potential gradients toward plagioclase, whereas Na, Ca, Al and Si
released from plagioclase diffuse toward olivine. Reactions occur at layer boundaries and layers expand as diffusion
progresses (Fig. 2b). The width and composition of each corona layer depend on the relative fluxes of the diffusing elements.

Inherent in the model is that the product mineral assemblage does not change as reaction proceeds. With time, chemical
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potentials and fluxes approach steady-state values. Mg, Ca, Na and Al are imported into the corona and Fe and Si are
exported from the corona. Minor spinel clouding occurs in reactant plagioclase as Ca and Si diffuse preferentially into the

reaction band, creating a Si deficiency that stabilises spinel in relict reactant plagioclase (Johnson and Carlson, 1990).

3.2 Non-continuous, sequential, diffusion-controlled corona growth

The sequential, diffusion-controlled corona layer growth model involves successive, step-wise, growth of layers, leading to
overprinting and partial re-equilibration of younger corona layers as new equilibria are encountered on either the prograde or
retrograde path. These changes are typically triggered by changing P and/or T but can also be triggered through changing
component fluxes through the corona as a function of evolving local effective bulk compositions (e.g., Griffin, 1972; Griffin
and Heier, 1973; Joesten, 1986; Droop, 1989; Indares, 1993; White et al., 2002; Johnson et al., 2004; Stipsk4 et al., 2010;
Baldwin et al, 2015). In contrast to the single-stage, steady-state model, the internal layer configuration of the corona
reaction band evolves with time as new layers develop and old layers are resorbed. Relative diffusion fluxes and attendant

chemical potential differences shift and evolve from one steady-state configuration to another under new P-T-X conditions.

Sequential corona development with changing P and T has been demonstrated in prograde coronas in mafic rocks between
olivine and plagioclase by Griffin (1972). He derived a sequential model for corona formation that involved cooling from
igneous temperatures at between 8 and 11 kbar and crossing of univariant equilibria (Figs. 3 and 4). Initially, olivine and
plagioclase crystallised at point A, but as the rock cooled, it was buried and followed the path delineated by the arrow in Fig.
4. At point B, the olivine and plagioclase reacted to produce Tschermakitic clinopyroxene (Cpx 1) and aluminous
orthopyroxene (Opx I; Fig. 3a). Phases in all diagrams and text are labelled using Kretz (1983) mineral abbreviations. As the
rock tracked through P-T space from B to C (Fig. 4), the clinopyroxene (Cpx I) exsolved spinel and anorthite to form a less
Tschermakitic clinopyroxene (Cpx Il; Fig. 3b). This clinopyroxene was partly consumed at point C (Fig. 4) to produce
garnet and a jadeitic clinopyroxene (Cpx IlI; Fig. 3c). Further cooling into the eclogite facies produced omphacitic
clinopyroxene and garnet with lesser quartz at point D (Fig. 3d). Finally, decompression on exhumation induced the
exsolution of the jadeite component from omphacite to yield diopside (Cpx 1V) and plagioclase towards point E (Figs. 3e
and 4).

Mork (1986) also invoked a sequential model for corona formation between olivine and plagioclase in western Norway as a

result of a clockwise P-T path.

Sequential corona development may also occur at constant P and T with changing component fluxes across the corona band.
A multilayer corona may evolve in a steady or quasi-stationary state controlled by diffusion (single-stage, steady-state
growth) and then subsequently modify through back-reaction between two adjacent layers at constant P and T through
changing composition of the effective equilibration volume as the composition of a reactant evolves with protracted reaction.

Brady (1977) and Vidale (1969) introduced a modification to the steady-state model that was first used to explain corona
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variability by Johnson and Carlson (1990). Vidale (1969) modelled the development of calc-silicate bands in a system with
waning availability of certain components. According to his model, rapidly diffusing components in a reaction band will
eventually eliminate their chemical potential gradients. The chemical potentials of those rapidly diffusing components are
then determined by equilibria outside of the corona band. As the number of components exerting a diffusive control on the
reaction is reduced by one, so one mineral phase is lost from the band (Vidale, 1969, Brady, 1977). This manifests as
‘cannibalisation’ of corona layers comprising the rapidly diffusing components. The original steady state is modified as the
system enters a transient state that will evolve through time toward a new steady state with constant chemical potential
gradients.

Johnson and Carlson (1990) employed the sequential development model to explain the variability in corona product
assemblages developed between plagioclase and olivine in a mafic granulite from the Adirondack Mountains (Fig. 5). As the
reactant plagioclase was gradually exhausted in Ca and Si, it was converted from labradorite to andesine + spinel (Fig. 5a).
This modification of the chemical potentials of Ca and Si by equilibria outside of the corona band manifests as the
destabilisation and subsequent ‘cannibalisation’ of, first, the plagioclase corona layer and then the clinopyroxene layer (Fig.
5a, b), as the system evolved toward a new steady-state scenario with constant chemical potential gradients. According to
Johnson and Carlson (1990), all corona bands were initially plagioclase- and clinopyroxene-bearing, but then evolved to
different final configurations with greater or lesser cannibalisation of these phases, depending on the availability of Ca and
Si in the surrounding phases. Where the olivine grain adjoins the spinel-poor plagioclase (originally less calcic, Angg), both
product plagioclase and clinopyroxene have been consumed, and the orthopyroxene is in contact with garnet (Fig. 5b, c). In
contrast, where olivine is adjacent to spinel-rich reactant plagioclase (originally more calcic, Ansg), corona plagioclase and

clinopyroxene are retained (Fig. 5¢).

Sequential layer development in a corona through variation of P, T and changing bulk composition of the corona reaction
volume was invoked by Indares (1993) to explain coronas between olivine and plagioclase in an olivine gabbro from the
Shabogamo Intrusive Suite, Eastern Grenville Province. Initially, at high P and T, under eclogite facies conditions, calcic
plagioclase reacted with olivine to form orthopyroxene and garnet coronas (Fig. 6a). The relative difference in intergranular
diffusivities of components manifests as two distinct corona layers over which chemical potential gradients exist, grading
from aluminous garnet adjacent to plagioclase to Al-poor orthopyroxene adjacent to olivine. Excess Al in the plagioclase
was accommodated by the formation of corundum (Fig. 6a). At the same pressure and temperature, the garnet layer grew by
reaction between calcic plagioclase and corona orthopyroxene in a local effective bulk composition different from that which
produced the initial corona orthopyroxene and garnet, which included olivine (Fig. 6b). Continued reaction generated excess
Si and Al in the reactant plagioclase, which reacted with corundum to form kyanite (Fig. 6b). In Fig. 6c, the reactant
plagioclase is relatively enriched in Na through the two former reactions. Na then diffused out of plagioclase and reacted

with corona orthopyroxene and garnet to form omphacite. In response, more kyanite formed in the plagioclase to
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accommodate excess residual Si and Al. With subsequent exhumation and decompression, corona garnet reacted with
kyanite and corundum in plagioclase to form spinel and more calcic plagioclase (Fig. 6d). In addition, garnet reacted with

omphacite and some excess Si to produce intervening plagioclase.

The sequential development of symplectites in pelitic rocks has been elegantly modelled using calculated phase diagrams
involving chemical potentials for coupled spinel+plagioclase symplectites and monomineralic plagioclase coronas after
kyanite by Stipska et al. (2010) and Baldwin et al. (2015). With isothermal decompression from peak conditions, kyanite is
no longer stable and a zoned monomineralic plagioclase layer forms between the kyanite and matrix with quartz in excess
and only Al,O5 considered immobile. As the plagioclase layer evolves, the diffusion of SiO, through the plagioclase layer
from the matrix is retarded and the local equilibrium volume encompassing the kyanite and plagioclase layer contact
becomes a silica-deficient one. The chemical potential of SiO, at the kyanite contact is accordingly lowered sufficiently to

stabilise spinel symplectitically intergrown with plagioclase.

4 Controls on corona development in granulites

Of all the substantive literature references to corona textures, only a few do not relate to pelitic or mafic bulk compositions.
Appendix 1 presents details of prograde coronas in the literature, whereas Appendix 2 comprises a selection of the more
numerous references to coronas formed during retrograde re-equilibration. Selected coronas from mafic and pelitic rocks are
schematically illustrated in Figures 7 and 8, respectively. The assemblages and microstructure in coronas in both pelitic and
mafic rocks vary considerably depending on (a) metamorphic conditions (P, T and aH,0), (b) formation mechanism through
either steady-state or sequential layer development, (c) reactant compositions, (d) diffusion kinetics, and (e) the amount of

deformation or strain intensity on either the prograde or retrograde path.

4.1 Pressure, temperature and aH,O

Pressure, temperature and aH,O conditions determine which mineral phases manifest in the corona. In olivine gabbros or
troctolites from the Adirondack Highlands, coronal assemblages vary from Ol | Opx+Cpx | Grt| Pl (reactants in italics;
abbreviations after Kretz, 1983) in the northeast (Johnson and Carlson, 1990 — Fig. 5a) to Ol | Opx | Cpx+Spl | PI in the
southwest (Whitney and McLelland, 1973 — Fig. 7a), with the presence of garnet in the former being attributed to higher
pressures towards the northeast. In the Newer Basic Intrusion of NE Scotland, the coronal assemblage
Ol | Opx | Hbl+Spl | Pl is observed (Mongkoltip and Ashworth, 1983 — Fig. 7b). In this case, Hbl is favoured over Cpx under
higher aH,O conditions. Similarly, the dominance of hornblende in the corona assemblage between garnet and
clinopyroxene described in Carlson and Johnson (1991) (Fig. 7c) versus the restriction of pargasite to the layer closest to
garnet in the coronas described by Baldwin et al. (2004) (Fig. 7d), is attributed to higher aH,O in the former corona
compositional domain.
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In metapelites, coronas after sapphirine and quartz comprise the sequence Spr|Sil|Opx|Qtz at higher pressures, but
Spr | Sil | Opx+Crd | Qtz at lower pressures and temperatures and/or higher aH,O conditions (e.g., Lal et al., 1987). Coronas
after gedrite and kyanite from the Thor Odin Dome in British Columbia comprise the sequence Ged|Crd|Crd+Sp1
symplectite | Crd+Crn symplectite | Ky (Norlander et al., 2002 — Fig. 8a). The lower-temperature equivalent corona
(assuming minimal bulk compositional differences) is Ged|Crd|St| Ky, which is seen in the Errabiddy metapelitic
granulites in Western Australia (Baker et al., 1987).

4.2 Sequential versus single-stage corona formation mechanism

Corona assemblages are also governed by the mechanism by which they formed, i.e., either in a single-stage, steady-state
event, or as sequential layers in response to varying pressure, temperature or component fluxes into the reaction volume.
Johnson and Carlson (1990) characterised a range of corona textures between olivine and plagioclase in the Adirondacks,
New York (Fig. 2 and Fig. 5) and attributed different corona configurations to varying extents of internal corona
cannibalisation with waning Ca and Si fluxes across the corona depending on the original composition of the plagioclase
reactant. Alternatively, intervening layers may develop with cooling as length-scales of diffusion become more constrained
and the corona compositional domain partitions into smaller-volume local equilibria in which a secondary corona
assemblage may develop by reaction between two contiguous layers at new P and T conditions (e.g., Griffin, 1972; Brandt et
al., 2003). Most coronas listed in Appendices 1 and 2 appear to be interpreted via the single-stage, steady-state model, but

sequential growth models are relatively common.

Determining which model of corona formation is applicable in a specific context is commonly difficult but vital if
information on the P-T path is to be gleaned correctly from the corona (White and Clarke, 1997). This is critically evident in
contrasting interpretations of the coronas formed between olivine and plagioclase in metagabbros from Risor, Norway
(Joesten, 1986; Ashworth, 1986).

Joesten (1986) cited textural evidence and the diffusional instability of any closed-system, steady-state, diffusion model for
the coronas in support of a model involving a primary magmatic origin for the coronas, followed by secondary annealing. He
suggested that cuspate olivine-orthopyroxene contacts, thickening of orthopyroxene layers at narrow terminations of olivine
grains, irregular contacts between orthopyroxene-spinel and amphibole-spinel layers, and sectoral heterogeneity in the
corona assemblage depending on the adjacent magmatic phase (i.e., either plagioclase, amphibole or clinopyroxene) are all
inconsistent with a diffusion-controlled origin. He suggested these features were more likely a result of olivine dissolution in
a melt, followed by the sequential growth of corona layers with cooling at magmatic temperatures above the olivine-
plagioclase stability field. Joesten (1986) proposed that these primary magmatic coronas were diffusionally unstable and that

they were spontaneously partially to completely annealed on cooling.
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In contrast, Ashworth (1986) suggested the Risor coronas formed by single-stage, steady-state, diffusion-controlled
replacement of plagioclase and olivine with an open-system modification to mass-balance model constraints. Textural
evidence apparently inconsistent with a diffusion model was attributed to locally variable kinetic controls on reaction
mechanism, for example, epitaxial growth of tabular amphibole on magmatic grains versus heterogeneous nucleation at
reactant contacts. Ashworth (1986) did not address the sectoral heterogeneity of the coronas nor the irregular contacts
between amphibole-spinel and orthopyroxene-spinel layers; however, it is conceivable that variation in the bulk composition
of the equilibration volume - both spatially and temporally as reaction proceeded - may account for such heterogeneity (e.g.,
Johnson and Carlson 1990).

Alternative sequential models of corona formation, invoking varying P, T and/or boundary fluxes, may similarly have
important implications for reconstruction of P-T paths. For the same corona textures between olivine and plagioclase in the
New York Adirondacks (Figs. 2, 5, and 6), three different P-T paths were constructed by Griffin (1972), Johnson and
Carlson (1990) and Indares (1993), respectively, based on their inferences about the drivers behind the corona reactions,
namely, changing pressure and temperature (Griffin, 1972; Joesten, 1986), changing component fluxes (Johnson and
Carlson, 1990), or a combination of all three parameters (Indares, 1993). Mass-balance constraints and compositional
zonation within each corona assemblage were cited in each case in support of the adopted model. Johnson and Carlson
(1990) attributed different corona configurations to varying extents of internal corona cannibalisation with waning Ca and Si
fluxes across the corona that were dependent on the original composition of the plagioclase reactant. Alternatively,
intervening layers may develop on a more local scale with cooling as length-scales of diffusion become more constrained
and the corona compositional domain partitions into smaller-volume local equilibria in which a secondary corona
assemblage may develop by reaction between two contiguous layers at new P and T conditions (e.g., Griffin, 1972; Brandt et
al., 2003).

Criteria for the identification of single-stage, steady-state layer growth include mineral zonation and a marked spatial
organisation of product reaction bands such that each layer represents a ‘non-overlapping volume in compositional space’
(Joesten, 1977; Fisher, 1977), all arranged in an orderly sequence of increasing or decreasing chemical potential (Fisher,
1977). If the corona has not attained equilibrium, asymmetric composition profiles in minerals within a corona layer and in
the corona as a whole are consistent with chemical potential gradients induced by relative differences in intergranular
diffusion rates of components at approximately constant P-T conditions (Indares, 1993, White and Clarke, 1997). In contrast,
a sequential corona model predicts symmetric, radial zoning of phases with respect to grain boundaries. Mass balance
constraints commonly preclude the formation of an intervening layer by reaction between two initially contiguous layers in a
sequential model. This necessitates the diffusion of requisite components from outside the limits of the immediate
equilibration volume within a single-stage, steady-state diffusional regime. Even so, evidence may be equivocal and it may

not be possible to exclusively establish single-stage, diffusion-controlled multilayer corona growth from step-wise,
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sequential growth in response to changing P-T conditions or component fluxes. In these cases, tectonic context and structural
data might provide independent constraints favouring one model over the other. Ultimately, clarification is best attained by
modelling the spatial arrangement of textures in a series of chemical potential phase diagrams, which allow the full range of
possible textural configurations given different formation mechanisms to be evaluated (White & Powell, 2011; Stipska et al.,
2010; Baldwin et al., 2015).

4.3 Reactant compositions

The compositions of local reactants principally determine the effective bulk composition of the corona, with a minor degree
of open-system communication with matrix beyond the immediate reactants. The most obvious manifestation of local
compositional control on corona configuration is demonstrated by the three main types of coronas observed in mafic rocks,
where metasomatic exchange with the enclosing rock is minimal and the corona bulk composition is principally determined
by the reactants. Local corona bulk compositions comprising orthopyroxene, clinopyroxene, plagioclase and garnet form
after olivine and plagioclase (Ol |Opx | Cpx |Pl|Grt|Pl — Fig. 2, 3 and 5). More aluminous, hydrous corona bulk
compositions after garnet and clinopyroxene with an externally-derived H,O-rich fluid stabilise amphibole, plagioclase and
orthopyroxene (Grt | Prg | P1| Cpx/Opx | Cpx — Fig. 7c, d). Commonly, clinopyroxene reacts with plagioclase to yield
clinopyroxene (with or without orthopyroxene), quartz and garnet coronas (Cpx | Cpx/Opx | Qtz | Grt | PI - Fig. 7e, f).

Markl et al. (1998) described coronas after fayalite and K-feldspar or plagioclase (Fa | Opx | Grt+Opx| P1/Kfs), in which the
layer thicknesses, product proportions and their compositions vary systematically depending on whether plagioclase or K-
feldspar is the reactant. Carlson and Johnson (1991) described a corona after garnet and quartz in a metagabbro from the
Llano Uplift in Texas comprising the layer sequence Grt | Pl+Mgt | Opx+Aug | Qtz. In metapelites, coronas after garnet and
quartz typically yield a coronal assemblage of Grt | Crd+Opx | +Pl | Opx | Qtz (Hollis et al., 2006 — Fig 8b). The presence of
augite, plagioclase and magnetite in the metagabbro may be attributed to significantly more calcic garnet (~8 wt% CaQ) with
a higher Xg than typical pelitic garnets. Van Lamoen (1979) and Nishiyama (1983) reported coronas after olivine and
plagioclase in metamafic rocks and conclusively demonstrated a correlation between the compositions of reactant olivine

and product orthopyroxene.

Sectoral development in complex coronas is perhaps the most obvious manifestation of reactant compositional control on
corona mineralogy and morphology. Kelsey et al. (2003b) described sectoral development of coronas around garnet in pelitic
granulites from the Mather paragneiss in the Rauer Group, Antarctica (Fig. 8c). In these granulites, garnet is enclosed by a
complex corona that comprises Grt | Crd+Opx symplectite | Opx | Qtz where garnet was initially adjacent to quartz and
Grt | Crd+Opx symplectite | Pl | Bt, where initially adjacent to biotite. These corona sectors appear to define unique, highly
localised, effective bulk compositions. The sharp changes in mineral proportions between sectors attests to the limited degree

of chemical communication between the Grt-Bt and Grt-Qtz compositional domains. Bruno et al. (2001) described coronas
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after biotite and quartz or feldspar, in which corona mineralogy varies around a single biotite grain from Bt | Grt | Qtz where
biotite abuts quartz, to Bt | Grt | Grt+Qtz | Phg+Qtz | Kfs where biotite is adjacent to K-feldspar and Bt | Grt | Grt+Jd | PI
where plagioclase encloses biotite (Fig. 8d). Stipska et al. (2010) noted complex radial and sectoral heterogeneity in coronas
after kyanite (Fig. 8h). Where kyanite is enclosed by plagioclase-K-feldspar-quartz matrix, it is replaced by a reasonably
uniform corona comprising Ky | PI+Sp=Crn symplectite | Pl | Matrix. The monomineralic plagioclase layer is strongly zoned
with respect to anorthite content, grading from X, = 0.45 to 0.20 adjacent to the matrix. Locally, where kyanite abuts garnet
from the peak assemblage, the plagioclase-spinel symplectite is absent and a thin Ca-poor garnet monomineralic layer is
rather developed, which is in turn enclosed by unzoned monomineralic plagioclase. Stipska et al. (2010) ascribed the
antipathetic occurrence of the garnet corona layer and the spinel+plagioclase symplectite to higher FeO and MgO chemical
potentials in the equilibration volume encompassing both garnet and kyanite as a reactant, which stabilised garnet in the

calculated product phase equilibria.

4.4 Diffusion Kkinetics

The spatial array of corona product bands and the presence or absence of associated symplectite is a function of diffusion
Kinetics, i.e., relative intergranular diffusivities of major system components. Typically, Al and Si are relatively immobile
compared to more rapidly diffusing components such as Fe, Mg and, to a lesser extent, Ca (e.g., Johnson and Carlson, 1990;
Carlson and Johnson, 1991; Ashworth and Birdi, 1990; Ashworth et al., 1992; Ashworth and Sheplev, 1997). In natural
coronas that have formed in a single-stage, steady-state, diffusion-controlled scenario, typically limited Al diffusion
manifests as both modal and phase compositional zonation in the corona, i.e., Al-rich minerals occur in layers closest to the
aluminous reactant and, within these layers, the corona minerals exhibit asymmetric zonation in compositional profiles, e.g.,
y(Opx) increases toward the Al-rich reactant. Since Fe and Mg typically diffuse more rapidly than Al, ferromagnesian
minerals tend to segregate into layers farthest from the aluminous reactant. Xg, varies across the corona depending on relative
intergranular diffusivities of Fe and Mg. Coronas after sapphirine and quartz in metapelites (Ellis et al., 1980 — Fig. 8e) and
between sillimanite and orthopyroxene (Kriegsman et al., 1999; Appendix 2) demonstrate spatial segregation of aluminous
corona layers (sillimanite and sapphirine, respectively) from more Fe- and Mg-rich corona products (orthopyroxene and
cordierite, respectively). Coronas after garnet and clinopyroxene in more mafic bulk compositions segregate into pargasite

adjacent to garnet and orthopyroxene+plagioclase adjacent to clinopyroxene (Baldwin et al., 2004 — Fig. 7d).

Kinetically-constrained reaction rates arise most commonly on the retrograde P-T path (Appendix 2) in melt-depleted,
restitic bulk rock compositions. In metapelites, coronal reaction textures are commonly attributed to isothermal
decompression following peak conditions on a clockwise P-T path (e.g., coronas after garnet and quartz; Kelsey et al., 2003b
— Fig. 8c) or to isobaric cooling (e.g., coronas after sapphirine and quartz; Grew, 1980 — Fig. 8e). White et al. (2002),
however, urge caution in inferring large amounts of decompression and cooling along the retrograde path to produce corona

textures; phase equilibria modelling of spinel-bearing symplectites after garnet from an Fe-rich pelitic granulite in the
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Musgrave Block, Australia (Fig. 8f), suggested to them that coronas might develop on any number of retrograde P-T path
trajectories through a high-variance field in which the mode of garnet is decreasing while that of the corona products is
increasing. Large amounts of decompression are, thus, not required to produce coronas and symplectites after garnet and

estimates of decompression from other terranes (e.g., Harley, 1989) may well have been overestimated.

Coronas developed on the prograde path (Appendix 1) are far less common than coronas that form after peak phases during
retrogression (Appendix 2), owing largely to more prolonged reaction duration; the presence of a melt or fluid and, hence,
greater length-scales of diffusion; and associated deformation on the prograde path. Thus, the kinetically-constrained
conditions on the prograde path suitable for corona growth occur in unique tectonic circumstances where deformation is
absent (e.g., White and Clarke, 1997 — Fig. 7e), at low aH,O in mafic rocks (Ashworth et al., 1998 — Fig. 7f; Johnson and
Carlson 1990 — Fig. 2) or in melt-depleted pelitic restites, or where the rate of change of pressure and temperature occurs
anomalously quickly such that diffusion rates are exceeded. Typically, the latter scenario arises in contact aureoles
characterised by rapid heating and cooling (Johnson et al., 2004 — Fig. 8g; Mcfarlane et al., 2003; Ings and Owen, 2002;
Barboza and Bergantz, 2000; Wheeler et al., 2004; Daczko et al., 2002; Dasgupta et al., 1997; Joesten and Fisher, 1988), but

it can also occur in shock-heated rocks within large impact structures (Gibson, 2002; Ogilvie, 2010).

4.5 Deformation and strain

High strain intensities have been shown to enhance equilibration (Holyoke and Tullis, 2006). White and Clarke (1997)
described coronas developed after orthopyroxene and plagioclase in a dolerite adjacent to a shear zone in the Western
Musgrave Block, Australia (Fig. 7e). Towards the shear zone, coronas diminish in complexity until complete equilibration
and recrystallisation is attained in the highest strain domains within the shear zone. Koons et al. (1987) documented similar
findings in a quartz diorite from the Sesia Zone, Western Alps, whilst Smit et al. (2001) described enhanced replacement of
garnet by, and deformation of, orthopyroxene+cordierite symplectite approaching bounding shears zones in the Limpopo
Belt, South Africa. With increasing deformation, equilibrium domains progressively approach that of the bulk rock
composition without any discernable change in pressure and temperature. White and Clarke (1997) attributed this enhanced
equilibration in high-strain domains to a combination of reduction in grain size with attendant increase in intergranular area,

accelerated intracrystalline diffusion and nucleation, and increased permeability and aH,O.

5 Conditions of corona formation

In general, thermobarometric estimates for the average P-T conditions of corona formation in mafic and pelitic rocks are
above the wet solidus for their respective bulk rock compositions (Fig. 9). The few exceptions plotting below the solidus
may be attributed to retrograde compositional resetting with cooling. Fig. 9 is consistent with corona formation at granulite
facies temperatures in rocks that have an intrinsically anhydrous bulk rock composition (e.g. mafic granulites) or have

undergone a degree of melt loss. Under these conditions, intergranular diffusion limits reaction rate and extent of
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equilibration, especially when melt is absent in coarse-grained assemblages. Retrograde corona development is likely
constrained to the portion of the P-T path immediately following peak T. Since most melt is lost at or near peak conditions
(White and Powell, 2002), only a fraction of melt is retained in the restitic post-peak assemblage. Reduced melt volumes
limit length-scales of diffusion during cooling to the extent that diffusion-controlled corona growth occurs. On the prograde
path, the low/absent melt volumes required for kinetically-constrained corona growth are only commonly realised in mafic
rocks, owing to their intrinsic anhydrous bulk composition, and in dry, restitic pelitic compositions that have lost melt in an
earlier metamorphic event. White and Powell (2011) distinguish two types of coronas formed either on the prograde or
retrograde paths, namely, progressive or non-progressive. Progressive coronas develop on the same P-T path as the
assemblage that they replace, in response to a smooth change in P-T conditions from those that produced the peak
assemblage (e.g., Johnson et al., 2004; Hollis et al., 2006; Kelsey et al., 2003b). Non-progressive coronas develop in a
separate P-T event to those that generate the peak assemblage (e.g., Johnson and Carlson, 1990; Gibson, 2002; McFarlane et
al., 2003).

6 Corona microstructure

Corona microstructure in prograde and retrograde coronas for which data is available is summarized in Figs. 10 and 11. The
average maximum corona layer thickness in mafic prograde coronas is 475 pum (range: 70-1000 um, n = 19) and average
maximum vermicule size is 118 pm (range: 50-300 pm, n = 19). Pelitic prograde coronas are characterized by an average
maximum corona thickness of 496 um (range: 75-1500 um; n = 13) and an average maximum vermicule size of 115 pum
(range: 10-300 pum, n = 13). Thus, mafic and pelitic prograde coronas do not differ significantly with respect to maximum
corona layer thickness and vermicule size. However, pelitic prograde coronas developed in contact metamorphic aureoles
appear to exhibit greater maximum corona layer thicknesses (>500 um) compared to regional pelitic prograde coronas (Fig.
10a).

Most retrograde coronas described in the literature occur in pelitic bulk compositions (Appendix 2; Figure 11). Pelitic
retrograde coronas are characterized by an average maximum corona thickness of 571 um (range: 100-3000 pm; n = 28) and
an average maximum vermicule size of 147 pum (range: 20-500 um, n = 28). The average maximum corona layer thickness
in mafic retrograde coronas is 262 pm (range: 80-500 um, n = 5) and average maximum vermicule size is 27 um (range: 10-
40 pm, n = 5). Whilst retrograde pelitic coronas do not differ significantly from prograde pelitic coronas in terms of width
and vermicule size, retrograde mafic coronas are distinctly narrower and show significantly reduced vermicule size relative
to prograde mafic coronas (Fig. 11) The latter most likely reflects greater length-scales of melt-enhanced diffusion along the
prograde path. A similar relative paucity of melt may explain the difference in corona thickness and vermicule size in

retrograde mafic coronas compared to retrograde pelitic coronas.
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7 Internal compositional zonation in coronas

Complex compositional zonation is commonly observed in coronas (Fig. 12). Fully equilibrated coronas, where no
compositional zonation or chemical potential gradients exist, are rare. In the population of coronas studied, only 30% were
fully equilibrated, of which 60% were in pelitic bulk compositions. Commonly, coronas exhibit asymmetric zonation across
the band as a whole, reflecting variable length-scales of diffusion for major components during single-stage, steady-state
growth (e.g., Ashworth et al., 1998 - A98; Johnson et al., 2004 - JO4, Figure 12). Less commonly, radial zonation occurs
within a product layer or vermicule from the band centre/vermicule core to the rim, indicative of sequential corona growth
(e.g., Zulbati et al., 2007 - ZHO07, Fig. 12). The maximum magnitude of zonation in X4 Of orthopyroxene across a corona
band in the coronas reviewed is 0.08 (Kriegsman et al., 1999 - K99; Osanai et al., 2004 - O04; Fig. 12) and 0.07 in cordierite
(Baker et al., 1987 - BKS87; Fig. 12). Unfortunately, Al content in orthopyroxene is expressed as y(Opx), Al'Y and Al wt%
in the literature commonly without accompanying raw analyses, so that these values cannot be recomputed to a single
formulation of Al in orthopyroxene to aid comparison. Maximum asymmetric zonation magnitude with respect to y(Opx) is
0.08 in Hollis et al. (2006 - HO6; Fig. 12); 0.13 with respect to Al' (a.p.f.u.) (Brandt et al., 2003 - BKOO03; Fig. 12) and 0.05
with respect to recalculated molecular proportion (Hisada and Miyano, (1996) - H96; Fig. 12). Maximum magnitude of
zonation in garnet is 0.22 for Xgs (White and Clarke, 1997 - WC97; Fig. 12), 0.18 for Xam (Indares, 1993 - 193; Fig. 12) and
0.17 for Xpr, (Koons et al., 1987 - K87; Fig. 12). Maximum magnitude in plagioclase zonation (AXa,) is 0.42 (Baldwin et al.,
2004 - B04; Fig. 12).

Product phase zonation makes the application of quantitative thermobarometry exceptionally difficult. Asymmetric
compositional zonation is consistent with steady-state, diffusion-controlled layer growth and, in this case, local equilibria
between mineral pairs in corona layers do not reflect discrete P-T conditions but, rather, compositional partitioning of the
corona domain during steady-state growth at constant P and T. Symmetric, radial zoning of phases with respect to grain
boundaries is more consistent with a sequential corona formation model, where initially corona layers may develop by
steady-state diffusion at (P,,T,), equilibrate given sufficient time and then, with subsequent change in P and T, partially re-

equilibrate under new P-T conditions (P,, T,) that are reflected in the rim compositions (e.g., White and Clarke, 1997).

In some instances, corona product phases in local equilibrium adjacent to a reactant possess low enough variance to apply a
conventional thermobarometer. For example, Baldwin et al. (2004) obtained P-T conditions of corona formation from Grt-
Opx-PI-Qtz equilibria using garnet rim and orthopyroxene-plagioclase symplectite compositions in direct contact. Some
authors have applied conventional thermobarometers to spatially segregated phases in a corona that are not in direct contact
(e.g., Perchuk et al., 2002; Brandt et al., 2003). This approach is only valid if there is no variation in phase composition

across the corona band and chemical potentials gradients do not exist.
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Ashworth et al. (1998) derived a non-equilibrium extension to conventional thermobarometry based on open-system, steady-
state diffusion modelling of coronas that has been successfully employed to estimate P-T conditions of formation of
asymmetrically-zoned coronas (Ashworth et al., 2001). Unfortunately, non-equilibrium thermobarometry, like conventional
thermobarometry, is very sensitive to uncertainties in compositional data and prone to underestimating peak temperatures of
formation, because of retrograde resetting upon cooling. The preferred thermobarometric technique for coronas entails phase
equilibria modelling in THERMOCALC (e.g., Baldwin et al., 2015), where modes and phase compositions are used to
jointly constrain a field of equilibration in P-T-X space. THERMOCALC allows the modelling of corona textures in
chemical potential space (White et al., 2008; White and Powell, 2011; Stipska et al., 2010 and Baldwin et al., 2015)
facilitating direct comparison of the observed phase zonation and spatial array of layers across a corona in which chemical

potential gradients prevail with predicted compositions at a range of temperatures and pressures.

8 Modelling of coronas

Diffusion modeling of metamorphic reactions began in earnest with the foundational work of Thompson (1959) and
Korzhinskii (1959), who demonstrated that infinitesimally small regions of rock can attain local equilibrium in the presence
of chemical potential gradients for all or some components. This meant that even if the system is in disequilibrium as a
whole, with gradients in chemical potentials of components in the intergranular medium, it is nevertheless possible to relate
the mineral assemblage at any point to the chemical potentials at that point. Korzhinskii (1959) devised a graphical method
for plotting a saturation surface in chemical potential space that allowed determination of relative chemical potential
differences across a series of layers (Figure 1). This method facilitated an understanding of how layer sequences would
evolve as components diffuse down chemical potential gradients. The limitation of Korzhinskii’s technique is that many
diffusion paths from one reactant to another are possible in the chemical potential diagram, such that more than one possible
layer sequence could evolve for a particular P-T condition (Nishiyama, 1983). The advances in thermodynamic formulations
of phases required to model these relationships would only be developed by workers in later decades (Powell & Holland,
1988; Powell & Holland, 1990; Holland & Powell, 1998; Powell et al., 1998; Holland & Powell, 2003; Powell et al., 2005;
Holland & Powell 2011; White et al., 2014), and even then only readily applied to coronas using the appropriate activity-
composition relationships through pioneering studies by White et al. (2008); Stipska et al. (2010) and Baldwin et al. (2015).
In the interim, workers modelled coronas through a quantitative physico-chemical modelling approach, in which component
fluxes and chemical potential gradients required to reproduce observed corona layers configurations were derived assuming

reaction was driven and governed by minimisation of entropy.

8.1 Quantitative physical modelling of coronas

The quantitative physical modelling of coronas is premised on the fact that in layered reaction products, mineral layers grow
by reaction at their contacts and the stoichiometries of the layer contact reactions are determined by the relative diffusion

fluxes of components within the layer. Component fluxes and chemical potential differences across each layer attain steady-
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state values as a function of the rate of production and consumption of phases in the layer (Fisher, 1975). Joesten (1977)
combined the approaches of Fisher (1975) and Korzhinskii (1959) into a hybrid methodology that allowed the prediction of a
unique sequence of mineral layers produced by steady-state diffusion for a given choice of phenomenological coefficients in
an isochemical system. Joesten’s model is based on three fundamental assumptions: first, diffusing components are in local
equilibrium with contiguous minerals at every point in a corona, despite the fact that the corona as a whole is in
disequilibrium; second, component fluxes and chemical potential gradients remain constant at each point in the corona in a
steady-state throughout its evolution; and third, all components are considered to be conserved within the reaction band, i.e.,
there is no communication with a system beyond the boundaries of the reaction bands (the system is closed).

Joesten’s model required the simultaneous solution of three sets of equations independently relating component fluxes to
chemical potential gradients in a layer, chemical potential gradients to each other in the presence of a mineral with a
particular composition, and the flux change between layers to reaction coefficients at layer boundaries (Ashworth and
Sheplev, 1997). It is possible to evaluate the stability of a multilayer reaction band for a postulated set of intergranular
diffusion coefficients if the compositions of the phases in each band are known. The model predicts the relative widths of
layers in the reaction band, modal proportions of phases within each layer, component fluxes across layers and reaction
stoichiometry at layer boundaries.

Early attempts to model corona textures using Joesten’s formalism focussed on corona reaction bands formed between
olivine and plagioclase in metagabbros (e.g., Nishiyama, 1983; Joesten, 1986; Grant, 1988). This early work was hindered
by the closed system constraint in Joesten’s model. For example, Grant (1988) was unable to produce enough Ca from the
observed reactant plagioclase to accommodate all the Ca in the corona reaction band. Furthermore, the failure of Joesten’s
model to account for hydrous corona products, such as hornblende, from anhydrous plagioclase and olivine reactants, led
workers to embrace an open-system, metasomatic, modification to Joesten’s model. An open-system modification was
introduced by Johnson and Carlson (1990) and Ashworth and Birdi (1990). Material balance calculations allowed them to
determine the external component fluxes across the outer boundaries of the corona, thereby accommodating open-system
communication with the enclosing matrix. Johnson and Carlson (1990) and Carlson and Johnson (1991) introduced external
boundary flux equations to model open-system behaviour. Ashworth and Birdi (1990) treated metasomatic fluxes at corona
boundaries as theoretical ‘phases’ with ‘negative’ compositions where components were lost from the system and ‘positive’
compositions where they entered into the corona system. The open system studies of Johnson and Carlson (1990) and
Carlson and Johnson (1991) also indicated that corona growth may not occur as a ‘single-stage, steady-state process’, but
rather through a number of ‘transient states’, reflecting gradual changes in the composition of the reactants and external

fluxes throughout corona evolution, thus manifesting as variable product assemblages (Figure 7a).

Open-system diffusion models for coronas had much more success in explaining corona development in a variety of

different bulk compositions, from mafic rocks to metapelites, than the earlier isochemical models (Johnson and Carlson,
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1990; Carlson and Johnson, 1991; Ashworth and Birdi, 1990; Ashworth et al., 1992; Ashworth, 1993; Ashworth and
Sheplev, 1997; Ashworth et al., 1998). Ashworth (1993) noted that, although the overall extent of reaction was constrained
by highly mobile components with large diffusive fluxes, the actual spatial arrangement of minerals in coronas appears to be
strongly controlled by those components with lower diffusivities, particularly Al and Si. He noted that, in all cases, an Al-
rich layer (commonly symplectitic) was located adjacent to the most aluminous reactant, grading into an Al-poor layer
adjacent to the less aluminous reactant, and both separated by a ‘transitional’ layer of intermediate contents of Al (Figure
13).

Ashworth and Birdi (1990) compared the Al/Si ratio in aluminous reactants and the adjacent symplectite for a number of
coronas using an isocon diagram (Figure 14; Grant, 1986). The isocon plot suggested that total Al and Si (strictly A103, and
Si0,, since the components used are oxides following Fisher, 1973) included within the phases in the symplectite appear to
be ‘inherited stoichiometrically’ from the adjacent reactant. Any mismatch between Al/Si ratio of the reactant and individual
phases comprising the symplectite is accommodated by proportional growth of symplectite phases in the appropriate ratio
such that cumulatively the Al/Si ratio is retained. Ashworth and Birdi (1990) proposed that this was a consequence of low
diffusivities of Al and Si relative to, inter alia, Fe, Mg and Ca. According to them, any disagreement between the Al/Si ratio
of the symplectite and reactant implies open-system behaviour for these components. The endmember scenario involving
near-complete open-system behaviour for Al and Si would, thus, be a monomineralic reaction band in which mismatch in
Al/Si ratio is greatest. Mongkoltip and Ashworth (1983) ventured still further that the occurrence of two immobile diffusing
components is a necessary condition for symplectite formation. This assertion agreed with the metasomatic equilibrium
theory of Korzhinskii (1965), which states that any divariant equilibrium assemblage of n phases contains at least n inert or
immobile components. Assessing open- or closed-system behaviour for Al and Si is critical in deciding which assumptions
are realistic when determining the overall reaction. If Al and Si are preserved in the symplectite, then closure to Al and Si
can be used to constrain the system such that it is not underdetermined. If this assumption is not valid, constant volume may

have to be assumed (Carlson and Johnson, 1991).

The first thermodynamic treatment of conservation of volume during diffusion metasomatism was undertaken by Carmichael
(1987). Carmichael challenged the assumption that pressure remains constant during irreversible diffusion metasomatism.
During reaction, there is a tendency for the boundary between two juxtaposed reactants to be displaced perpendicular to the
interface between the reactants at a magnitude corresponding to the change of volume of solid phases of the reaction. If there
is any mechanical resistance to this displacement, constant volume replacement is approached. Carmichael (1987) was able
to model a field of nonhydrostatic stress induced by migration of the boundary between reactants. The stress field is oriented
in a manner which opposes the displacement and strain accompanying the migration of the boundary. The stress field may be
dissipated by either rock deformation or secondary mass transfer out of the reacting volume. According to Carmichael’s

model, the secondary mass transfer may be so efficient as to eliminate the induced stress caused by boundary migration, such
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that the original interface between reactants remains undisplaced. This realisation allows reasonable approximations to be
made for the original boundary between reactants (and the relative proportions of reactants involved in reaction) such that an

overall reaction may be derived.

In this context, the spacing of lamellae or vermicules in symplectites reflects a balance between diffusive energy dissipation
and grain boundary energy. Ashworth and Chambers (2000) derived a theory quantifying this relationship employing both
non-equilibrium thermodynamics and the principle of maximum rate of energy dissipation. Accordingly, the spacing of
lamellae in a symplectite for a particular reaction is a function of the reaction rate (i.e., reaction front velocity), diffusion
coefficient of the slowest-diffusing components and the width of the reaction front:

1=32
\'

A = lamellae spacing; L = Onsager diffusion coefficient

0 = reaction front width; v = reaction rate

The finest symplectitic intergrowths (closest lamellae spacing) are predicted to occur when reaction rates greatly exceed

diffusion coefficients for the slowest-diffusing species for a particular reaction front width.

Despite advances in diffusion metasomatic modelling of coronas in the early 1990’s, success was still limited in that
commonly more than one stable layer sequence was computable for the same inputs. Sheplev et al. (1991, 1992a, b)
presented a criterion to determine which non-unique solution is more thermodynamically stable compared to others and is,
thus, the correct solution. The criterion was formalized by Ashworth and Sheplev (1997), and extended so as to obtain a
measure of the affinity of reaction or, rather, departure from equilibrium, preserved in the corona. A final refinement to the
open-system diffusion model for coronas was derived by Ashworth et al. (2001), in which ratios of the affinity of
independent endmember reactions modelled for a corona are compared to ratios calculated from an internally-consistent
thermodynamic database (Holland and Powell, 1998). The pressure and temperature where the ratio of model endmember
reaction affinities and real endmember reaction affinities approach the same value is considered to represent the closure
pressure and temperature below which the corona remained inert to reaction. This allowed quantitative estimates of pressure

and temperature of formation of minerals in disequilibrium to be made.

8.2 Calculated phase equilibria modelling

A limitation of the quantitative physical modelling of coronas outlined above is that solid solutions and the gradational shifts

in phase composition within a band cannot practically be accounted for in the modelling (White and Powell, 2011; Baldwin
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et al. 2015). In the last decade, advances in phase equilibria modelling have allowed geologically realistic corona
compositional systems to be modelled in P-T-X (Johnson et al., 2004) and chemical potential space (White et al., 2008;
Stipské et al., 2010; White & Powell, 2011; Baldwin et al., 2015). It is possible to predictively model corona evolution with
changing effective bulk composition through progressive metasomatic exchange of components with the external matrix in a
rock and/or partitioning of the corona effective bulk composition with reduced length-scales of component diffusion on
cooling (e.g., Johnson et al., 2004; White et al., 2008; Stipsk4 et al., 2010; Baldwin et al., 2015).

One of the most robust and elegant applications of chemical potentials in constraining corona textural and compositional
evolution in P-T-X space is that undertaken by Stipska et al (2010). These workers modelled coronas developed after kyanite
in a quartzofeldspathic gneiss from the Bohemian Massif (Figure 8h). Phase equilibria modelling entailed an initial estimate
of overall P and T conditions prevailing using a conventional P-T pseudosection in NCKFMASHTO (Stipsk4 et al., 2010).
For the purpose of phase equilibria modelling in chemical potential space, it is necessary to reduce the number of
components treated, based on assumptions considering their inferred relative mobility. Stipskd et al.,, (2010) ranked
components in the corona according to a hierarchy of mobility or relative diffusivities, i.e., slowest diffusing components are
considered effectively immobile (i.e., chemical potential gradients are static and cannot change during reaction); other
components are considered mobile (their chemical potential gradients vary on the scale of the corona); and some components
are treated as completely mobile (their chemical potentials do not vary across the corona and are superimposed by the

matrix). Accordingly, Stipska et al., (2010) were able to reduce the model compositional system to NCKFMAS.

Prior to their consideration of the ferromagnesian minerals in the corona, Stipska et al. (2010) modelled the monomineralic
plagioclase moat in NCKAS, with the further assumption that K,O is completely mobile and Al,O3 is immobile with static
potentials, i.e., it is treated as an extensive variable, in terms of phase composition. The chemical potentials for the matrix
edge of the corona correspond to those for the equilibrated peak assemblage and the corona plagioclase composition in local
equilibrium with matrix (i.e., Any) (Fig. 15a). The chemical potentials for the metastable kyanite corona contact were
derived by modifying p1(Na,O) at the matrix contact until the kyanite-plagioclase boundary with Anys appears on the phase
diagram (Fig. 15a). In Fig. 15a, the chemical potential relations at the kyanite and matrix boundary are overlain in p(CaO)-
H(SiO,) space and local equilibrium potentials indicated. Since the values of pu(Na,O), p(CaO) and u(SiO,) differ between
the two equilibria, a chemical potential gradient is established and is represented by the vector in Fig. 15a. For equilibrium to
be attained throughout the corona, chemical potentials must be equalised everywhere by diffusion. If diffusion is kinetically

constrained, these chemical potential gradients persist as stranded gradients in chemical potential (Baldwin et al., 2015).

Stipska et al. (2010) modelled the presence or absence of a garnet layer in the corona by superimposing p(FeO) and u(MgO)
variations on the vector in i(Na,O)-u(CaO)-u(SiO,) space obtained in Fig. 15b. The authors calculated p(FeO)- p(MgO)
diagrams for the matrix boundary, kyanite boundary and midway between the them with respective p(Na,O)-p(CaO)-

H(SiO,) dictated by the vector constrained in NCKAS space (Figure 15a). The observed composition of garnet (Xg = 0.70),
21



10

15

20

25

30

Solid Earth Discuss., doi:10.5194/se-2016-97, 2016

Manuscript under review for journal Solid Earth Solid Earth
Published: 25 July 2016 Discussions
(© Author(s) 2016. CC-BY 3.0 License.

defines a corresponding vector in p(FeO) and u(MgO) space (Figure 15b). Stipska et al. (2010) manually constructed a
phase diagram by combining the phase relations along the Xg = 0.70 vector in pu(FeO) and p(MgO) space with those
corresponding in W(Na,O)-u(CaO)-u(SiO,) space (Fig. 15c¢). Two observed chemical potential paths were proposed to
account for garnet-present and garnet-absent coronas that reproduced the known spatial array and composition of phases.
They suggest that the chemical potential path required to produce garnet requires the pu(FeO) and u(MgO) potentials to be
boosted relative to those in local equilibrium with the matrix. This is consistent with the spatial association of original matrix
garnet in the corona, such that the p(FeO) and p(MgO) potentials are locally augmented, thereby stabilising a garnet layer in

the coronas in the local equilibrium with kyanite (Stipsk4 et al., 2010).

Modelling of the development of the plagioclase-spinel symplectite required that SiO, also be treated as immobile (Stipska et
al., 2010). Constrained SiO, diffusion from the matrix toward kyanite across the plagioclase moat induced a silica-deficient
effective local bulk composition at the plagioclase-kyanite boundary, thus, lowering the local SiO, chemical potential
sufficiently to stabilise spinel (assuming corundum was unable to nucleate). As a consequence, both SiO, and Al,Os
chemical potentials are treated as quasi-stationary, i.e., they are modelled as the coupled extensive composition variables. As
a consequence, phase fields in mu-mu space are labelled with Al,03-SiO, bar compatibility diagrams. Stipskd et al. (2010)
proceeded to model the requisite chemical potentials for the symplectite stability initially in p(NayO)-p(CaO)-p(SiOy) space.
They derived a vector in chemical potential space between the symplectite contact with the plagioclase moat and the kyanite
boundary (Figure 15d) that accounted for the plagioclase composition within the symplectite. However, the restricted
stability limits of spinel in mu-mu space at the modelled conditions of post-peak conditions led Stipska et al. (2010) to infer
the spinel-bearing symplectites must have formed during subsequent decompression after plagioclase moat formation, as the

spinel stability field is far broader at lower pressures for the same potentials.

Similarly Baldwin et al. (2015) modelled spinel-plagioclase, sapphirine-plagioclase and corundum-plagioclase symplectites
after kyanite in a quartzofeldspathic granulite gneiss from the Athabasca granulite terrane, Snowbird tectonic zone, Canada.
These workers, like Stipska et al. (2010), deduced that the spinel-plagioclase symplectites must be metastable with respect to
the corundum-bearing alternative. Assuming corundum was unable to nucleate, they were able to account for spatial
relationships and compositions observed in the symplectites over a wide range of P-T conditions and plagioclase
compositions. Crucially they were able to deduce that, without the application of chemical potential phase diagrams
suggesting otherwise, such reaction textures may occur over a wide range of P-T conditions and extreme caution must be

exercised in inferring P-T conditions of retrograde metamorphism from them.

Stipska et al. (2010) and Baldwin et al. (2015) conclusively demonstrate that the use of chemical potentials is imperative and
unavoidable when investigating coronas. Previous workers (Johnson et al., 2004; Tajémanova et al., 2007; Ogilvie, 2010)
have attempted to model corona textures without the chemical potential phase diagrams. These authors invoked an

equilibrium volume comprising the corona, with or without a matrix contribution, which they assumed to be effectively
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closed system during textural development. Accordingly, corona growth involved a redistribution of chemical components
within the limits of the equilibrium volume. This approach might account for some of the phases within the corona, but fails
to account for the non-linear exchange of components both within local equilibria across the corona but also external
metasomatic exchange with the enclosing matrix during corona evolution. Tajémanova et al (2007) tried to circumvent this
problem by constructing a T-X section to model the compositional partitioning, owing to variable diffusion of components,
across the corona, and predicted phases. Similarly, Ogilvie (2010) attempted to model shifts in corona phase compositions
and modes through the inferred exchange of components between the corona effective bulk compositions and the external
matrix through a T-X section involving pure reactants on one axis and pure matrix as the other axis. The fundamental
problem with both these approaches, as noted by White & Powell (2011), is that at best, it is only possible to account for
observed assemblages in a qualitative generalised sense. This is because the high variance of the phase fields from the T-X
section or P-T pseudosection predicts stable phases should be present in the coronas that are not actually observed. This can
only be treated by considering some components as mobile, and removing them from the bulk composition utilised to model
the corona. Crucially, the manner in which the chemical potentials evolve through P-T space involves non-linear changes in
chemical potentials and local effective bulk compositions. Since P-T pseudosections are constrained at a static bulk
composition and a T-X section can only model linear changes in bulk composition, by their nature they are not flexible
enough to allow modelling of the intricacies of corona development either owing to variable external component flux into

the corona (for example, by melt ingress or loss) or variable multi-component length-scales of diffusion.

9 Discussion

Evidence of partial equilibrium, preserved in coronas, allows us to examine fundamental processes governing reaction
mechanism, rates and extents of equilibration in metamorphic (and, more rarely, igneous) rocks. Mechanisms of corona
formation have been reviewed, i.e., continuous, single-stage, steady-state, diffusion-controlled vs. non-continuous, sequential
development. A comprehensive review of prograde and retrograde coronas for mafic and pelitic bulk rock compositions
from both regional and contact aureole terranes reveals that major controls on corona mineralogy include P, T and aH,O
during formation, mechanism of formation, reactant bulk compositions and extent of metasomatic exchange with the
surrounding rock, relative diffusion rates for major components, and associated deformation and strain. In general, corona
formation occurs under granulite facies conditions, in anhydrous/restitic, melt-depleted bulk rock compositions (Fig. 9).
With respect to corona microstructure, prograde coronas in pelitic rocks developed in contact metamorphic aureoles exhibit
greater maximum corona thickness than those in regional coronas (Figure 11a). Mafic and pelitic prograde coronas do not
differ significantly with respect to maximum corona layer thickness and vermicule size, however, corona thickness and
maximum vermicule size in retrograde mafic coronas are significantly smaller than both retrograde pelitic coronas and
prograde mafic coronas, which likely attests to the role of melt in enhancing length-scales of diffusion during corona
formation (retrograde mafic rocks are more likely to be melt-poor and anhydrous). Increased maximum layer thickness and

vermicule size in prograde mafic coronas compared to retrograde mafic coronas (Fig. 11) may reflect greater length-scales of
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diffusion in potentially more melt-rich bulk compositions with protracted reaction along the prograde path. Prograde pelitic
coronas do not differ significantly from retrograde pelitic coronas with respect to microstructure (Fig. 11), owing to the
intrinsically more hydrous pelitic bulk compositions and capacity to generate diffusion-enhancing melt during

decompression.

High-variance local equilibria in a corona and disequilibrium across the corona as a whole preclude the application of
conventional thermobarometry when determining P-T conditions of corona formation. Although tempting, the asymmetric
zonation in phase composition across a corona, indicative of single-stage, steady-state, diffusion controlled formation, should
not be interpreted as a record of discrete P-T conditions during successive layer growth along the P-T path. Rather, the local
equilibria between mineral pairs in corona layers reflect compositional partitioning of the corona domain during steady-state
growth at constant P and T. A non-equilibrium extension of conventional thermobarometry derived by Ashworth et al.
(2001) should be used with phase equilibria modelling in THERMOCALC to constrain P-T evolution of coronas (e.g.,
Ogilvie 2010).

Through the application of equilibrium thermodynamics at an appropriate scale (i.e., that of local equilibrium — Korzhinksi,
1959; Thompson 1959), corona evolution can be modelled either through quantitative physico-chemical diffusion modelling
(Johnson and Carlson, 1990; Carlson and Johnson, 1991; Ashworth and Birdi, 1990; Ashworth et al., 1992; Ashworth, 1993;
Ashworth and Sheplev, 1997; Ashworth et al., 1998) or calculated phase equilibria involving chemical potentials (White et
al., 2008; Stipské et al., 2010; White & Powell, 2011; Baldwin et al., 2015). While the former allows quantification of
reaction affinity and chemical potential gradients across coronas bands, it is unable to practically accommodate variation in
phase composition within a band. Moreover, it assumes that corona layer configuration formed during one, continuous,
single-stage, diffusion-controlled process, i.e., component flux between local equilibria across all bands in the corona was
controlled by chemical potential gradients at that scale. In contrast, forward modelling utilising calculated chemical potential
gradients to account for corona phase compositions and layer array, assumes nothing about the sequence in which the layers
form and, since chemical potential gradients prevailing are constrained by observed phase compositional variation within a
layer, it allows far more nuanced yet robust understanding of corona evolution and the implications for the path followed by

a rock in P-T-X space.
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Figure 1. Chemographic relationships and chemical potential saturation surfaces for local transient equilibria at corona boundaries during
incipient stages of single-stage, steady-state, diffusion-controlled corona growth (after Joesten, 1977). (a) Original phases (A and D)
initially at equilibrium under P, and T, with bulk composition indicated by the circle. (b) New P and T conditions (P,, T,) are kinetically
inhibited and reaction progress becomes diffusion-controlled. The corona domain is partitioned into a continuum of compositional
subdomains, or incipient "effective bulk compositions" (triangle, square), each with unique chemical potentials, in which local equilibrium
is attained. (c) Ternary G-X surface, in which local equilibria are separated by chemical potential differences. (d) The chemical potential
saturation surface for each of the local phase assemblages. (e) Projection of the saturation surface on the peompi-Heomp2 Plane. Chemical

potential gradients between local equilibria drive diffusion of components from one compositional domain to another until chemical

potentials are equalised and equilibrium is attained.
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Figure 2. Open-system, continuous, single-stage, steady-state, diffusion-controlled growth of prograde corona layers between olivine and
plagioclase (modified after Johnson and Carlson, 1990). (a) With incipient reaction, different rates of intergranular diffusion for major
components manifest as spatially segregated layers. The corona domain is partitioned into a continuum of compositional subdomains or
5 incipient effective bulk compositions in which local equilibrium is attained, each with unique chemical potentials. Fe, Mg and Si released
from olivine diffuse down chemical potential gradients toward plagioclase, whereas Na, Ca, Al and Si released from plagioclase diffuse
toward olivine. Layers comprising the slowest diffusing species (Al) adjoin the most aluminous reactant. (b) Reactions occur at layer
boundaries and layers expand as diffusion progresses. The width and composition of each corona layer depend on the relative fluxes of the
diffusing elements. Minor spinel clouding occurs in reactant plagioclase as Ca and Si diffuse preferentially into the reaction band, creating

10 aSi deficiency in reactant plagioclase.
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Figure 3. Non-continuous, multi-stage, sequential layer development in a corona between olivine and plagioclase formed in response to
changing P and T along the P-T path shown in Fig. 2 (after Griffin, 1972). (a) Original olivine and plagioclase react to form orthopyroxene
and clinopyroxene. (b) Clinopyroxene breaks down to form a less Tschermakitic composition with plagioclase and spinel. (c)
Clinopyroxene reacts with orthopyroxene, spinel and plagioclase to produce garnet. (d) Orthopyroxene reacts with spinel and plagioclase

to produce omphacite, garnet and quartz. (¢) Omphacite decomposes to clinopyroxene and plagioclase.
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Figure 4. P-T grid indicating univariant equilibria crossed during cooling to produce the sequence of reactions in Fig. 1 (after Griffin,

1972).
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Figure 5. Non-continuous, multi-stage, sequential layer corona layer development at constant P and T in response to waning boundary
fluxes of rapidly diffusing components from the reactants into the corona in an open system (after Johnson and Carlson, 1990). (a) Initial
steady-state layer configuration for an olivine-plagioclase corona. (b) Depletion of Ca and Si in the reactants leads to the consumption of
plagioclase, and then (c) clinopyroxene, in transient states. The system gradually evolves toward a new steady state. Cannibalisation of

corona plagioclase and clinopyroxene is more enhanced where the original reactant is Ca-poor (top-right, Angg).
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Figure 6. Non-continuous, multi-stage, sequential corona layer development between plagioclase and olivine owing to varying component
fluxes across the corona bands and, later, owing to decompression (modified after Indares, 1993). Corona layer growth in (a)-(c) occurs
under constant high P and T, initially from discrete reactions between reactants and then subsequently between individual corona layers as
component fluxes vary across the corona. The formation of the plagioclase layer in (d) is ascribed to decompression. Detailed reaction

mechanisms are discussed in the text.
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a)

Figure 7. Common corona textures developed in mafic granulites. (a) Prograde corona developed between olivine and plagioclase during
burial following shallow intrusion in the southwestern Adirondacks, New York (after Whitney and McLelland, 1973). Garnet is not
present in this corona owing to low inferred pressures during corona reaction. There is no variation in Xy,4 of pyroxenes. (b) A retrograde
corona developed between olivine and plagioclase in an olivine metagabbro from northeast Scotland (after Mongkoltip and Ashworth,
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1983). The presence of amphibole suggests higher aH,O than in more anhydrous domainal compositions where only clinopyroxene is
stable. Al content and Xg, of Opx and Hbl increase toward Pl reactant. c) Retrograde corona developed between garnet and clinopyroxene
during a static thermal event with the intrusion of numerous granite plutons in the Llano Uplift, Texas (after Carlson and Johnson, 1991).
The presence of hornblende implies relatively high aH,O during reaction. Both hornblende and plagioclase are asymmetrically zoned
across the corona band. Plagioclase becomes less calcic (Anssto Anyg) and amphibole Fe/Mg and Al/Si ratios decrease toward omphacite.
(d) Retrograde corona developed between garnet and clinopyroxene from the Snowbird Tectonic Zone, Western Canadian Shield (after
Baldwin et al., 2004). The restricted distribution of hornblende in this corona compared to that in (c), suggests a less hydrous bulk corona
composition. Marked zonation in plagioclase occurs from Ang; adjacent garnet to Any, at clinopyroxene margin. (e) Prograde corona
developed between plagioclase and orthopyroxene during deformation-enhanced reaction in a dolerite towards a shear zone (after White
and Clarke, 1997). Garnet exhibits asymmetric zonation as Xam, Xprp and Xgs increase toward Pl. Garnet zoning diminishes toward shear
zone. (f) Prograde corona developed between plagioclase and orthopyroxene in a mafic granulite from Yenisey Ridge, Siberia (after
Ashworth et al., 1998). Layer 1 garnet (Grt,) is zoned: Fe increases and Ca decreases (Xgs: 0.24 - 0.21; Xam: 0.54 - 0.60) toward layer 2.
A slight compositional perturbation across layer 1 is thought to mark the initial PI/Opx boundary. In layers 3 and 4, Ca in garnet is almost
constant, with higher Fe and lower Mg than in layer 1. No systematic zonation is observed in pyroxene. Non-equilibrium

thermobarometric estimates for corona formation are 740 + 20 °C and 9.5 + 0.7 kbar (Ashworth et al., 2001).
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Figure 8: Sectoral complexity in corona textures developed in pelitic granulites. (a) Complex corona between kyanite and gedrite (after
Norlander et al., 1996). No compositional variation in any corona phases was observed. Conditions of formation constrained at < 5 kbar
and ~ 750 °C with TWQ and conventional thermobarometers. (b) Common complex corona developed after garnet and quartz (after Hollis
et al., 2006). No systematic variation is described in corona products. (c) Complex sectoral corona between garnet, biotite and quartz.
Monomineralic plagioclase is constrained to the corona immediately adjacent to biotite. Similarly, blocky orthopyroxene occurs only in the
corona sectors where garnet reacts with quartz (after Kelsey et al., 2003b). Cordierite Xy varies across symplectite increasing toward
orthopyroxene in general. No variation in orthopyroxene composition is observed. (d) Symplectite-dominated corona developed between
biotite and K-feldspar (after Bruno et al., 2001). Where biotite reacts with quartz, monomineralic garnet comprises the corona. Elsewhere,
a complex, symplectite-dominated corona comprising garnet, quartz and phlogopite occurs where biotite and feldspar react. Corona garnet
is weakly zoned. (€) Monomineralic sillimanite and orthopyroxene developed after sapphirine and quartz (after Ellis et al., 1980 and Grew,
1980). (f) Retrograde spinel-garnet symplectite replacing peak garnet during post-peak decompression (after White et al., 2002). This
corona develops in response to changing modes in a high variance equilibrium assemblage. No univariant reaction is crossed. (g) Prograde
complex corona comprising spinel-cordierite symplectite and leucocratic biotite, K-feldspar and plagioclase after andalusite (after Johnson
et al., 2004). Xy, of cordierite decreases toward biotite (0.55 - 0.51) with no variation in spinel composition. Cordierite moat formation
occurs during an andalusite melting reaction consuming quartz and biotite, followed by continued breakdown of andalusite to cordierite-
spinel symplectite in SiO, deficient domains. (h) Sectoral replacement of kyanite by plagioclase+spinel symplectite and zoned
monomineralic plagioclase. Where primary garnet abuts kyanite, the symplecittie is not developed, and kyanite is replaced by low-Ca

garnet enclosed by unzoned plagioclase (After Stipska et al., 2009).
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Figure 9: Summary of P-T conditions of formation for coronas reviewed in this study. (a) P-T conditions for prograde coronas. (b) P-T
conditions for retrograde coronas. In general, conditions of corona formation occur above the wet solidus for each respective bulk
composition. The few coronas that plot at lower temperatures than the wet solidi may be subject to retrograde diffusional resetting of the
thermometers and, in reality, may have formed at higher suprasolidus temperatures. Error bars are for the range of each estimate. BWS =
wet basalt solidus; GWS = wet granite solidus; GDS = dry granite solidus and BDS = dry basalt solidus. Solidi were digitised in P-T space

from geosciences resource database available at http://www.geosci.usyd.edu.au/users/prey/Granite/Granite.html
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Figure 10: Variation in corona microstructure in mafic and pelitic bulk rock compositions. (a) Variation in maximum corona thickness in
prograde coronas. (b) Variation in maximum vermicule size in prograde coronas. Hatched bars are prograde coronas from contact aureoles.
Each corona reference is tagged by a code (e.g., WM73) which correlated with the detailed charactersitics of each corona in the Tables
included in Appendix1.
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Figure 11: Variation in corona microstructure in mafic and pelitic bulk rock compositions. (c) Variation in maximum corona thickness in

retrograde coronas. (d) Variation in maximum vermicule size in retrograde coronas.
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Figure 12: Magnitude of compositional zonation in product corona bands. Hatched fields indicate pelitic bulk rock compositions;
unhatched are mafic. (a) Xug Variation in product phases. (b) Variation in Al content in orthopyroxene across each corona (c) Garnet

zonation across each corona. (d) Plagioclase zonation across coronas where it is documented.
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Figure 13: Sketch of a typical corona developed between plagioclase and olivine in metagabbros (after Ashworth, 1993). As reaction
proceeds, layers grow by diffusion along grain boundaries of requisite components down concentration gradients to layer boundaries
where they are consumed in the production of product phases. Al is considered to be the most immobile diffusing species, since Al
concentration gradients are most marked. Al exerts the greatest control on segregation of corona products in bands, from the most Al-rich

symplectite adjacent to plagioclase to Al-poor orthopyroxene adjacent to olivine.
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Figure 14: Isocon plot of Al/Si ratios in symplectites and the adjacent reactant plagioclase. The isocon line represents Al/Si ratios that are
preserved exactly between reactant and products. Any deviation from this line indicates a degree of open-system behaviour. In general,
analysed symplectites from the literature plot above the isocon line, suggesting that the Al/Si ratio is lower in the product symplectite than

it is in the reactant plagioclase, i.e., the corona system is losing Al to the external system relative to Si with prolonged reaction.
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Figure 15: Chemical potential relationships governing the development of a corona after kyanite (after Stipska et al., 2009). (a) Calculated
K(SiO,)— p(CaO) diagrams in the NCKAS system for the matrix (red lines) and the kyanite boundary (light blue lines). Gradients in the
chemical potentials from the matrix to the kyanite—plagioclase boundary are represented by a vector in p(SiO,)-pu(CaO)—p(Na,O) space.
(b) Superimposed u(MgO) and p(FeO) variations on the W(SiO,)-u(CaO)—p(Na,O) vector from (a): (i) for the matrix, (ii) for the
plagioclase—kyanite boundary and (ii) inside kyanite. The topology shows garnet and orthopyroxene fields while spinel is metastable.
Garnet compositional isopleths x(Grt) are plotted within the garnet stability field. The arrow is a vector coincident with the x(Grt) = 70

isopleth, where x(Grt) = Fe/(Fe + Mg) * 100. (¢) Phase topology obtained by manual combination of the calculated phase relations along
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a slice at approximately fixed p(MgO)/ 1(FeO) (along x(g) = 70) from (b) with the calculated phase relations along the vector u(SiO2)—

K1(Ca0)- u(Na20) from (a), contoured with compositional isopleths ca(pl). The dashed arrow shows a path from kyanite across garnet and

plagioclase towards the matrix. (d) p(FeO)-p(MgO) diagrams along the ca(P1)=45 line calculated at 800°C and 5.5 kbar. SiO, and Al,03

are immobile. Fields are labelled with Al,O3-SiO, bar diagrams and contoured for x(Grt), x(Spl) and ca(Pl). Grey ellipses show regions of
5 plagioclase-spinel symplectite where mineral compositions correspond to observed values (ca(Pl) = 35-45 mol.% and x(Spl) = 60-63).
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